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H � Hot Hike

Problem

Given values t1, . . . tn, which i minimizes max(ti , ti+2)?

Business Logic Solution
ACCEPT lin

MOVE FUNCTION NUMVAL(lin) TO n

ACCEPT lin

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n

UNSTRING lin DELIMITED BY SPACE INTO Z(i) WITH POINTER linepos

END-PERFORM

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n - 2

IF FUNCTION MAX(Z(i), Z(i + 2)) < v THEN

SET v TO FUNCTION MAX(Z(i), Z(i + 2))

SET d TO i

END-IF

END-PERFORM

MOVE v TO t

DISPLAY d, " ", t

Statistics: 380 submissions, 219 accepted, �rst after 00:03
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E � Eeny Meeny

Problem

Simulate team selection process.

Solution

1 Keep kids in a list, remove from list when they are selected.
2 Jump k − 1 steps in list every time.

(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11
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A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution

1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions
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K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution

1 If we start putting sodas in a slot, that slot is �lost� and we
might as well �ll it up completely.

2 If slot A has more old sodas than slot B , it is never better to
�ll up slot A before slot B .

3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions
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B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution

1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions
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C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution

1 One split su�ces if a is divisible by n or m.
2 Two splits su�ce if a can be factored into a = x · y where

x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions
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G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution

1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions
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F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution

1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:

If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions
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I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi ).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi )−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions
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J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution

1 Kids have preference orderings of which toys they prefer to
play with.

2 Envy can be viewed as toys having a preference ordering of
which kids they want to be assigned to.

3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions
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D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions
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Solution, part 1: basic setup
1 Explore by walking towards unvisited spaces.

2 Represent current knowledge as a set of map fragments.
3 When we fall into an unknown trap, create a new fragment.
4 Have some logic to identify when two fragments must be the

same and merge fragments when possible.
Many di�erent approaches possible, main challenge is choosing one

that minimizes implementation di�culty.
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D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 2: identifying and merging fragments
1 Observation: if locations always explored in same order, then

after falling into new traps 4 times, we have started repeating
an ABABAB... or AAAAAA... pattern of traps.

⇒ last and third last trap must be the same, can merge.
2 Can also deduce how to merge two fragments if they:

Have traps leading to the same location (must be same trap).
Both have two traps.

3 If we merge two fragments, any traps they have in same
position must lead to same fragment.
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Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 3: end game

At end we may still have two separate fragments, for two reasons:

1 Only one trap (indistinguishable from two separate identical
rooms). Use connectedness guarantee to deduce single trap.

2 Cannot reach both traps from any one point. By
connectedness guarantee, traps must be next to each other in
a narrow corridor, use this to merge the two fragments. E.g:

###### ###### ##########

#a..B? and ?A...# => #a..BA...#

#S.### ##..b# #S.###..b#

###### ###### ##########
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Random statistics

231 submitting teams

3303 total number of submissions (1002 accepted)

9 programming languages used by teams.
Ordered by popularity:
1416 Python 2/3 (2018: 1400)
938 C++ (2018: 740)
775 Java (2018: 892)
105 C# (2018: 105)
36 Rust (2018: N/A)
28 C (2018: 6)
3 Haskell (2018: 6)
2 Ruby (2018: 0)

326 lines of code used in total by the shortest jury

solutions to solve the entire problem set.

NCPC 2019 solutions



What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 15-17 in Eindhoven.

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (June 2020 in Moscow, Russia)

NCPC 2019 solutions



What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 15-17 in Eindhoven.

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (June 2020 in Moscow, Russia)

NCPC 2019 solutions


