
NCPC 2019

Presentation of solutions

2019-10-05

NCPC 2019 solutions

Problems prepared by

Per Austrin (KTH Royal Institute of Technology)

Bjarki Ágúst Guðmundsson (Reykjavík University)

Nils Gustafsson (KTH Royal Institute of Technology)

Antti Laaksonen (CSES)

Ulf Lundström (Excillum)

Jimmy Mårdell (Spotify)

Torstein Strømme (University of Bergen)

Pehr Söderman (Kattis)

Jesper Öqvist (Lund University)

And big thanks to Luká² Polá£ek for test-solving the problems!

NCPC 2019 solutions

H � Hot Hike

Problem

Given values t1, . . . tn, which i minimizes max(ti , ti+2)?

Business Logic Solution
ACCEPT lin

MOVE FUNCTION NUMVAL(lin) TO n

ACCEPT lin

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n

UNSTRING lin DELIMITED BY SPACE INTO Z(i) WITH POINTER linepos

END-PERFORM

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n - 2

IF FUNCTION MAX(Z(i), Z(i + 2)) < v THEN

SET v TO FUNCTION MAX(Z(i), Z(i + 2))

SET d TO i

END-IF

END-PERFORM

MOVE v TO t

DISPLAY d, " ", t

Statistics: 380 submissions, 219 accepted, �rst after 00:03

Author: Per Austrin NCPC 2019 solutions

H � Hot Hike

Problem

Given values t1, . . . tn, which i minimizes max(ti , ti+2)?

Business Logic Solution
ACCEPT lin

MOVE FUNCTION NUMVAL(lin) TO n

ACCEPT lin

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n

UNSTRING lin DELIMITED BY SPACE INTO Z(i) WITH POINTER linepos

END-PERFORM

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n - 2

IF FUNCTION MAX(Z(i), Z(i + 2)) < v THEN

SET v TO FUNCTION MAX(Z(i), Z(i + 2))

SET d TO i

END-IF

END-PERFORM

MOVE v TO t

DISPLAY d, " ", t

Statistics: 380 submissions, 219 accepted, �rst after 00:03

Author: Per Austrin NCPC 2019 solutions

H � Hot Hike

Problem

Given values t1, . . . tn, which i minimizes max(ti , ti+2)?

Business Logic Solution
ACCEPT lin

MOVE FUNCTION NUMVAL(lin) TO n

ACCEPT lin

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n

UNSTRING lin DELIMITED BY SPACE INTO Z(i) WITH POINTER linepos

END-PERFORM

PERFORM VARYING i FROM 1 BY 1 UNTIL i GREATER THAN n - 2

IF FUNCTION MAX(Z(i), Z(i + 2)) < v THEN

SET v TO FUNCTION MAX(Z(i), Z(i + 2))

SET d TO i

END-IF

END-PERFORM

MOVE v TO t

DISPLAY d, " ", t

Statistics: 380 submissions, 219 accepted, �rst after 00:03
Author: Per Austrin NCPC 2019 solutions

E � Eeny Meeny

Problem

Simulate team selection process.

Solution

1 Keep kids in a list, remove from list when they are selected.
2 Jump k − 1 steps in list every time.

(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11

Author: Pehr Söderman NCPC 2019 solutions

E � Eeny Meeny

Problem

Simulate team selection process.

Solution
1 Keep kids in a list, remove from list when they are selected.

2 Jump k − 1 steps in list every time.
(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11

Author: Pehr Söderman NCPC 2019 solutions

E � Eeny Meeny

Problem

Simulate team selection process.

Solution
1 Keep kids in a list, remove from list when they are selected.
2 Jump k − 1 steps in list every time.

(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11

Author: Pehr Söderman NCPC 2019 solutions

E � Eeny Meeny

Problem

Simulate team selection process.

Solution
1 Keep kids in a list, remove from list when they are selected.
2 Jump k − 1 steps in list every time.

(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11

Author: Pehr Söderman NCPC 2019 solutions

E � Eeny Meeny

Problem

Simulate team selection process.

Solution
1 Keep kids in a list, remove from list when they are selected.
2 Jump k − 1 steps in list every time.

(where k = number of words in rhyme.)

3 Time complexity O(n2) (why the square?).

Statistics: 346 submissions, 198 accepted, �rst after 00:11

Author: Pehr Söderman NCPC 2019 solutions

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution

1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution
1 Count how many unused words start with each letter a-z

2 For each unused word x that starts with last letter of previous
word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution
1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution
1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution
1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

A � Alphabet Animals

Problem

Find a winning next move in Word Chain game, or just some valid
move if no winning move exists.

Solution
1 Count how many unused words start with each letter a-z
2 For each unused word x that starts with last letter of previous

word, check if there are no unused words that start with last
letter of x (if so, x is winning).

3 Special case: x starts and ends with same letter.
(Shown in Sample Input 3.)

4 Time complexity O(n).

Statistics: 723 submissions, 189 accepted, �rst after 00:05

Author: Ulf Lundström NCPC 2019 solutions

https://en.wikipedia.org/wiki/Word_chain

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution

1 If we start putting sodas in a slot, that slot is �lost� and we
might as well �ll it up completely.

2 If slot A has more old sodas than slot B , it is never better to
�ll up slot A before slot B .

3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.

2 If slot A has more old sodas than slot B , it is never better to
�ll up slot A before slot B .

3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.
2 If slot A has more old sodas than slot B , it is never better to

�ll up slot A before slot B .

3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.
2 If slot A has more old sodas than slot B , it is never better to

�ll up slot A before slot B .
3 ⇒ Greedily put new sodas in slots with fewest old sodas.

4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.
2 If slot A has more old sodas than slot B , it is never better to

�ll up slot A before slot B .
3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.

5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.
2 If slot A has more old sodas than slot B , it is never better to

�ll up slot A before slot B .
3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

K � Keep it Cool

Problem

How to put n new sodas in a fridge with s partially �lled
stack-based slots of sodas in a way that maximizes chances that
next m sodas taken from fridge are all old sodas?

Solution
1 If we start putting sodas in a slot, that slot is �lost� and we

might as well �ll it up completely.
2 If slot A has more old sodas than slot B , it is never better to

�ll up slot A before slot B .
3 ⇒ Greedily put new sodas in slots with fewest old sodas.
4 If untouched slots have < m sodas, impossible.
5 Time complexity O(s log s).

Statistics: 334 submissions, 151 accepted, �rst after 00:31

Author: Markus Dregi NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution

1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.

2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.

3 last rectangle as high as possible with left side aligned with
one of the previous two, or to the right of the previous two.

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two

or

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

or or

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

or or

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33

Author: Antti Laaksonen NCPC 2019 solutions

B � Building Boundaries

Problem

Arrange three rectangles of sizes a1 × b1, a2 × b2 and a3 × b3 so
that area of enclosing rectangle minimized.

Solution
1 Without loss of generality, can assume solution places:

1 one rectangle somewhere.
2 next rectangle to the right with top side aligned.
3 last rectangle as high as possible with left side aligned with

one of the previous two, or to the right of the previous two.

or or

2 Try for all 3! · 23 = 48 permutations+rotations of rectangles.

Statistics: 232 submissions, 100 accepted, �rst after 00:33
Author: Antti Laaksonen NCPC 2019 solutions

C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution

1 One split su�ces if a is divisible by n or m.
2 Two splits su�ce if a can be factored into a = x · y where

x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions

C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution
1 One split su�ces if a is divisible by n or m.

2 Two splits su�ce if a can be factored into a = x · y where
x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions

C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution
1 One split su�ces if a is divisible by n or m.
2 Two splits su�ce if a can be factored into a = x · y where

x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions

C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution
1 One split su�ces if a is divisible by n or m.
2 Two splits su�ce if a can be factored into a = x · y where

x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions

C � Cocoa Coalition

Problem

Split n ×m bar of chocolate into piles of size a and n ·m − a by
breaking it horizontally/vertically as few times as possible.

Solution
1 One split su�ces if a is divisible by n or m.
2 Two splits su�ce if a can be factored into a = x · y where

x ≤ n and y ≤ m, or if n ·m − a can.
(Check by trying all O(n) possible values of x .)

3 Three splits are always enough.

Statistics: 642 submissions, 85 accepted, �rst after 00:20

Author: Pål Grønås Drange NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution

1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .

2 ⇒ Equivalent problem: divide n troops into some number g
groups of size k , remaining ones into ≤ m groups of size < k .

3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .

3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.

4 ⇒ Given value of g , can do a little math and compute
objective value in constant time.

5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.

5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.

6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07

Author: Nils Gustafsson NCPC 2019 solutions

G � Game of Gnomes

Problem

Divide n troops into ≤ m groups. Each round we lose up to k
troops from one group. Maximize sum of life lengths of troops.

Solution
1 Group of size x + k equivalent to two groups of sizes x and k .
2 ⇒ Equivalent problem: divide n troops into some number g

groups of size k , remaining ones into ≤ m groups of size < k .
3 For the groups of size < k , optimal to split the troops evenly.
4 ⇒ Given value of g , can do a little math and compute

objective value in constant time.
5 g must be between n/k −m and n/k . Try all possibilities.
6 Time complexity O(m) (faster solutions exist).

Statistics: 268 submissions, 19 accepted, �rst after 01:07
Author: Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution

1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:

If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.

Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:

If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:

If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:

If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:
If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:
If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.

4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:
If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30

Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

F � Flow Finder

Problem

Given rooted tree with water �owing from sources to root, and
some known water �ows, reconstruct all of them if possible.

Solution
1 In bottom-up order:

For unknown �ows where all child �ows known, �ow is sum of
child �ows.
Compute lower bounds on �ows: actual �ow if known,
otherwise max of 1 and sum of lower bounds of child �ows.

2 In top-down order, for known �ows:
If one unknown child, or lower bounds of unknown children
adds up to remaining �ow, distribute among unknown children.

3 Verify all �ows known and correct when done.
4 Time complexity O(n).

Statistics: 219 submissions, 24 accepted, �rst after 01:30
Author: Markus Dregi and Nils Gustafsson NCPC 2019 solutions

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.

5 Time complexity O(n log n) after reading the n2 size input to
compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34

Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

I � Incremental Induction

Problem

Given complete directed graph (tournament), order nodes so that
number of edges from �rst t nodes to last n − t nodes is at most k
for all t. Find minimum value of k (a.k.a. �directed cutwidth�).

Solution

1 #edges from �rst t nodes to anywhere is
∑t

i=1
outdegree(vi).

2 #edges from �rst t nodes to �rst t nodes is
(t
2

)
.

3 So #edges from �rst t to last n − t nodes are∑t
i=1

outdegree(vi)−
(t
2

)
.

4 Implies it is optimal to order nodes by increasing out-degree.
5 Time complexity O(n log n) after reading the n2 size input to

compute degrees.

Statistics: 30 submissions, 11 accepted, �rst after 01:34
Author: Torstein Strømme NCPC 2019 solutions

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution

1 Kids have preference orderings of which toys they prefer to
play with.

2 Envy can be viewed as toys having a preference ordering of
which kids they want to be assigned to.

3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.

2 Envy can be viewed as toys having a preference ordering of
which kids they want to be assigned to.

3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.
2 Envy can be viewed as toys having a preference ordering of

which kids they want to be assigned to.

3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.
2 Envy can be viewed as toys having a preference ordering of

which kids they want to be assigned to.
3 This is the Stable Matching Problem.

4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.
2 Envy can be viewed as toys having a preference ordering of

which kids they want to be assigned to.
3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.

5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.
2 Envy can be viewed as toys having a preference ordering of

which kids they want to be assigned to.
3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

J � Jealous Youngsters

Problem

Allocate toys to kid so that they do not start crying.

Solution
1 Kids have preference orderings of which toys they prefer to

play with.
2 Envy can be viewed as toys having a preference ordering of

which kids they want to be assigned to.
3 This is the Stable Matching Problem.
4 Know how to solve it or �gure out algorithm.
5 Time complexity: O(nm logm) (log factor can be eliminated)

Statistics: 40 submissions, 5 accepted, �rst after 03:02

Author: Bjarki Á. Guðmundsson and Jesper Öqvist NCPC 2019 solutions

https://en.wikipedia.org/wiki/Stable_marriage_problem

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 1: basic setup
1 Explore by walking towards unvisited spaces.

2 Represent current knowledge as a set of map fragments.
3 When we fall into an unknown trap, create a new fragment.
4 Have some logic to identify when two fragments must be the

same and merge fragments when possible.
Many di�erent approaches possible, main challenge is choosing one

that minimizes implementation di�culty.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 1: basic setup
1 Explore by walking towards unvisited spaces.
2 Represent current knowledge as a set of map fragments.

3 When we fall into an unknown trap, create a new fragment.
4 Have some logic to identify when two fragments must be the

same and merge fragments when possible.
Many di�erent approaches possible, main challenge is choosing one

that minimizes implementation di�culty.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 1: basic setup
1 Explore by walking towards unvisited spaces.
2 Represent current knowledge as a set of map fragments.
3 When we fall into an unknown trap, create a new fragment.

4 Have some logic to identify when two fragments must be the
same and merge fragments when possible.
Many di�erent approaches possible, main challenge is choosing one

that minimizes implementation di�culty.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 1: basic setup
1 Explore by walking towards unvisited spaces.
2 Represent current knowledge as a set of map fragments.
3 When we fall into an unknown trap, create a new fragment.
4 Have some logic to identify when two fragments must be the

same and merge fragments when possible.
Many di�erent approaches possible, main challenge is choosing one

that minimizes implementation di�culty.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 2: identifying and merging fragments
1 Observation: if locations always explored in same order, then

after falling into new traps 4 times, we have started repeating
an ABABAB... or AAAAAA... pattern of traps.

⇒ last and third last trap must be the same, can merge.
2 Can also deduce how to merge two fragments if they:

Have traps leading to the same location (must be same trap).
Both have two traps.

3 If we merge two fragments, any traps they have in same
position must lead to same fragment.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 2: identifying and merging fragments
1 Observation: if locations always explored in same order, then

after falling into new traps 4 times, we have started repeating
an ABABAB... or AAAAAA... pattern of traps.
⇒ last and third last trap must be the same, can merge.

2 Can also deduce how to merge two fragments if they:
Have traps leading to the same location (must be same trap).
Both have two traps.

3 If we merge two fragments, any traps they have in same
position must lead to same fragment.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 2: identifying and merging fragments
1 Observation: if locations always explored in same order, then

after falling into new traps 4 times, we have started repeating
an ABABAB... or AAAAAA... pattern of traps.
⇒ last and third last trap must be the same, can merge.

2 Can also deduce how to merge two fragments if they:
Have traps leading to the same location (must be same trap).
Both have two traps.

3 If we merge two fragments, any traps they have in same
position must lead to same fragment.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 2: identifying and merging fragments
1 Observation: if locations always explored in same order, then

after falling into new traps 4 times, we have started repeating
an ABABAB... or AAAAAA... pattern of traps.
⇒ last and third last trap must be the same, can merge.

2 Can also deduce how to merge two fragments if they:
Have traps leading to the same location (must be same trap).
Both have two traps.

3 If we merge two fragments, any traps they have in same
position must lead to same fragment.

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 3: end game

At end we may still have two separate fragments, for two reasons:

1 Only one trap (indistinguishable from two separate identical
rooms). Use connectedness guarantee to deduce single trap.

2 Cannot reach both traps from any one point. By
connectedness guarantee, traps must be next to each other in
a narrow corridor, use this to merge the two fragments. E.g:

##########

#a..B? and ?A...# => #a..BA...#

#S.### ##..b# #S.###..b#

##########

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 3: end game

At end we may still have two separate fragments, for two reasons:
1 Only one trap (indistinguishable from two separate identical

rooms). Use connectedness guarantee to deduce single trap.

2 Cannot reach both traps from any one point. By
connectedness guarantee, traps must be next to each other in
a narrow corridor, use this to merge the two fragments. E.g:

##########

#a..B? and ?A...# => #a..BA...#

#S.### ##..b# #S.###..b#

##########

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 3: end game

At end we may still have two separate fragments, for two reasons:
1 Only one trap (indistinguishable from two separate identical

rooms). Use connectedness guarantee to deduce single trap.
2 Cannot reach both traps from any one point. By

connectedness guarantee, traps must be next to each other in
a narrow corridor, use this to merge the two fragments. E.g:

##########

#a..B? and ?A...# => #a..BA...#

#S.### ##..b# #S.###..b#

##########

Statistics: 1 submissions, 0 accepted

Author: Per Austrin NCPC 2019 solutions

D � Dungeon Dawdler

Problem

Explore and create map of 2D maze with up to two
trapdoors/teleporters that cause us to loose our bearings.

Solution, part 3: end game

At end we may still have two separate fragments, for two reasons:
1 Only one trap (indistinguishable from two separate identical

rooms). Use connectedness guarantee to deduce single trap.
2 Cannot reach both traps from any one point. By

connectedness guarantee, traps must be next to each other in
a narrow corridor, use this to merge the two fragments. E.g:

##########

#a..B? and ?A...# => #a..BA...#

#S.### ##..b# #S.###..b#

##########

Statistics: 1 submissions, 0 accepted
Author: Per Austrin NCPC 2019 solutions

Random statistics

231 submitting teams

3303 total number of submissions (1002 accepted)

9 programming languages used by teams.
Ordered by popularity:
1416 Python 2/3 (2018: 1400)
938 C++ (2018: 740)
775 Java (2018: 892)
105 C# (2018: 105)
36 Rust (2018: N/A)
28 C (2018: 6)
3 Haskell (2018: 6)
2 Ruby (2018: 0)

326 lines of code used in total by the shortest jury

solutions to solve the entire problem set.

NCPC 2019 solutions

What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 15-17 in Eindhoven.

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (June 2020 in Moscow, Russia)

NCPC 2019 solutions

What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 15-17 in Eindhoven.

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (June 2020 in Moscow, Russia)

NCPC 2019 solutions

